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1,1-Dibromoethylene and 1,1-Difluoroethylene. A 
partial normal coordinate calculation is available for 
both molecules;66 we have repeated the calculations so 
as to include the out of plane vibrations. The observed 
frequencies of ref 67 were used (Tables XXXI and 
XXXII). 

Acetylene. Valence force constants were obtained 
for this molecule by fitting to the observed funda­
mentals for C2H2, C2HD, and C2D2 reported by Herz-
berg13 (Table XXXIII). 

Monohaloacetylenes. Valence force constants for 
the monohaloacetylenes have been calculated from 
the frequency data of ref 15. For monofluoroacetylene 
a second set of force constants was evaluated, fitting to 
the slightly different assignments of ref 14; see main 
text (Tables XXXIV-XXXVI). 

Methane. We have taken the observed frequencies 

(66) J. R. Scherer and J. Overend, J. Chem. Phys., 32, 1720 (1960). 
(67) S. Brodersen and A. Langseth, J. MoI. Spectrosc, 3, 114 (1959). 

of ref 68 to obtain a set of force constants (Table 
XXXVII). 

FJuoroform. We have used the relevant force 
constants reported in ref 69 as starting values in our 
least-squares fitting (Table XXXVIII). 

Chloroform and Bromoform. Although a good 
Urey-Bradley force field is available for both mole­
cules,70 we have repeated the calculations in terms 
of valence force fields, using the same types of interac­
tion force constants that were used for fluoroform. All 
fittings converged well except for the Ai block of bromo­
form, which would not converge. We have chosen the 
set of force constants for this symmetry block which 
gives the closest agreement between observed and calcu­
lated frequencies (Tables XXXIX and XL). 

(68) I. M. Mills, Spectrochim. Acta, 16, 35 (1960). 
(69) D. A. Long, R, B. Gravenor, and D. T. L. Jones, Trans, Faraday 

Soc, 60, 1509(1964). 
(70) T. Shimanouchi and I. Suzuki, J. MoI. Spectrosc, 6, 277 (1961) 
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Abstract: This paper examines the vibrationally induced stabilization of the lowest singlet and triplet vertically 
excited states of the benzene molecule. The nuclear motions which lead to a favorable (at least initially) stabilizing 
path are selected both qualitatively and quantitatively. The resulting potential energy surfaces of the excited states 
are discussed in relation to the spectroscopical and photochemical behavior of the benzene molecule. 

In 1944 Lewis and Kasha1 concluded after an in­
vestigation of the benzene phosphorescence spec­

trum that the molecule in its triplet state was contracted 
along the 1.4 axis. Even though it appeared later that 
the study of the phosphorescence intensity alone was 
not a very sensitive way of determining such distor­
tions,2 and, indeed, Shull3 has shown that the phos­
phorescence spectrum can be interpreted in terms of a 
hexagonal Dih configuration, more convincing experi­
mental results are now available which support a 
very slight distortion away from hexagonal symmetry.4 

They indicate that the lowest triplet state, 3Bi11, is dis­
torted into a nonplanar structure with two long bonds 
and four short ones. It is very important to note that 
these results have been obtained for the C6H6 molecule 
in a crystalline environment (usually in a C6D6 crystal). 
Therefore the nuclear displacements may result from 
the crystal field itself rather than being intrinsic prop-

* On leave from the Laboratoire de Chimie Theorique, Centre 
Scientifique d'Qrsay, Universite de Paris—Sud, 91 Orsay, France. 

(1) G. N. Lewis and M. Kasha, J. Amer. Chem. Soc, 66, 2100 (1944). 
(2) G. C. Nieman, / . Chem. Phys., 50, 1660, 1674 (1969). 
(3) H. Shull, ibid., 17, 295 (1949). 
(4) (a) G. C. Nieman and D. S. Tinti, ibid., 46, 1432 (1967); (b) 

D. M. Burland, G. Castro, and G. W. Robinson, ibid., 52, 4100 (1970); 
(c) J. H. van der Waals, A. M. D. Berghuis, and M. S. de Groot, MoI. 
Phys., 13, 301 (1967); (d) A. M. Ponte-Goncalves and C. A. Hutchison 
Jr., J. Chem. Phys., 49, 4235 (1968). 

erties of the free single molecule. Notwithstanding 
it is shown in this paper, by using a second-order per­
turbation method, that the nuclear motions which 
might stabilize the vertically excited triplet state 3Bm 
of the free molecule are precisely those which distort 
the triplet molecule in the crystal. 

I. Qualitative Selection of the Stabilizing Vibrations 
The problem we are looking at here is the selection 

of the nuclear motions which may be particularly 
efficient in the process of stabilizing a vertically ex­
cited species. One approach to this problem is the 
Herzberg-Teller expansion of the Hamiltonian in a 
Taylor series in normal coordinates of the ground 
electronic state." If this development is restricted to 
only one coordinate, Q, we may write the correct 
Hamiltonian to second order in nuclear displacements 

H = H0 + (dH/'dQ)0Q + 7-2(d2#/de2)o22 + 0(Q3) (1) 
(5) This set of normal coordinates is well adapted to the study of vi-

bronic problems in absorption where the originating state is the ground 
state; in emission problems it is more appropriate to use the normal 
coordinates of the excited electronic state from whose equilibrium nu­
clear configuration emission takes place. In the problem at hand 
neither one is perfect; it would be better to simply use a set of symmetry 
coordinates. In the benzene case, however, some matrix elements are 
readily evaluated in terms of the ground state's normal coordinates. 
It is hoped that such a convenient choice entails only slight impairment 
of our description. 
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where H0 is the electronic Hamiltonian under the zeroth-
order Born-Oppenheimer approximation. The eigen-
functions and eigenvalues of H0 being respectively 
christened \n) and En

0, the second-order energy En of 
\n) is6 

^ = ^+Q<«!(|f)j«> + 

™U$) i-> - ̂  E KIDH] (2) 
In this expansion /c runs over all states |fc) which have 
the same multiplicity as \ri). Such a development has 
been extensively used as the starting point in all studies 
of vibrationally induced perturbations in molecular 
ground-state electronic distributions.7 In the present 
excited state case the interpretation of the various terms 
remains. Following Salem8 the second and third 
terms in (2) represent "the energy change due to the 
nuclear motion within a fixed electronic density" 
whereas the fourth one can be called the "relaxability" 
of the molecule along the coordinate Q and represents 
"the energy change due to the rearrangement of the 
electronic density induced by the nuclear displace­
ments." In order to analyze (2) using group theory 
arguments we dub T(S) the irreducible representation 
to which the species S belongs. Since the Hamiltonian 
H is invariant under the operations R of the group of 
the molecule, (BHJdQ)0 has the same symmetry prop­
erties in electron space that Q has in the nuclear space. 
Therefore (3HJdQ)0 belongs to T(Q) and (d2H/dQ2)Q 

to the direct product T(Q) X T(Q). The first-order 
diagonal term (second term in (2)) vanishes unless the 
direct product T(n) X T(n) contains T(Q). If T(n) 
is a nondegenerate irreducible representation (and 
this will be the case for the lowest triplet, Bin, and the 
lowest singlet, B2u, of benzene), the first-order term is 
nonzero only if Q is a totally symmetric vibration. 
Q therefore corresponds to a "breathing" motion of the 
whole molecule. (It is well known that in the excited 
states of benzene the ring gets slightly bigger.) The 
second-order diagonal term (third term in (2)) will 
always be nonzero, since, whatever the degree of de­
generacy of T(ri) or T(Q), the direct products T(n) X 
T(n) and T(Q) X T(Q) both contain the totally sym­
metric irreducible representation T1. This term, how­
ever, may be accidentally very small since its magnitude 
depends upon the overlap, i.e., the relative localiza­
tion in the molecule, of the electronic density (n\\n) 
and the nuclear displacements involved in Q. In 
our qualitative analysis these two diagonal terms will 

(6) It must be remembered that, for (2) to be strictly true, the wave 
function \n) has to fulfill some conditions. Let us for example consider 
the first order term. The relation SEnIdQ = (n\(dHjdQ)o\n) is true 
only if (Sn[Ho - En»\n) + (n\Ho - En

0ISn) = 0 (Sn denoting the small 
change of \n) produced by dQ) or more precisely if (a) jn) is the exact 
solution of the eigenvalue equation (H0 — En°)\n) = 0 or (b) jn) is 
determined variationally. For our particular benzene case the eigen-
functions \n) are "virtual orbital" wave functions in which the molecular 
orbitals are assumed to have their ground state forms. Such particular 
eigenfunctions do not obey (a) or (b) and (2) is only approximately true 
(even though this approximation is probably a reasonable one). 

(7) (a) R. F. W. Bader and A. D . Brandrauk, / . Chem. Phys., 49, 
1666(1968); (b) R. F. W. Bader, Can. J. Chem., 40, 1164 (1962); ( c ) R . 
G. Pearson, J. Amer. Chem. Soc, 91 , 4947 (1969); Accounts Chem. Res., 
4, 152 (1971); (d) L. Salem, Chem. Phys. Lett., 3, 99 (1969); (e) J. 
Burdett, / . Chem. Phys., 52, 2983 (1970); Appl. Spectrosc. Ren., 4 , 43 
(1970). 

(8) L. Salem, / . Chem. Phys., 38, 1227 (1963). 

not be further considered. (For more details see ref 
9.) The off-diagonal second-order term (fourth term 
in (2)) is always a stabilizing term. This statement is 
unambiguous in the case of the lowest triplet state of a 
molecule (since the denominator Ek° — En

0 always has 
a positive value) and is roughly true in the case of the 
lowest excited singlet state.10 

The first step in the analysis of this off-diagonal 
matrix element, term 3, is to consider the difference of 

- V ^ g A (3) 
k% Ek° -Eno

 W 

eigenenergies appearing in the denominator. For the 
stabilizing contribution to be important EK° — .En

0 

has to be small (in the limits permitted by the perturba­
tion theory framework). Therefore, if \n) is the 
lowest excited state of a given multiplicity, the sum 
over all excited states \k) of the same multiplicity 
may be truncated and restricted to the three or four 
states \k) that follow \n) in order of increasing ver­
tical excitation energies.11 In the case of benzene, 
Table I12 shows that, in the study of the lowest B lu 

Table I. Ab Initio S C F Vert ical Exc i t a t i on Energies of the 
Tr ip le t a n d Singlet Exc i ted S ta tes of Benzene (Energies in eV) 

3B1,, 
3E,,, 
3A2U 

3B,,, 
3 E J 8 
3 E 8 8 

Triplet states 

3.66 
4.69 

> 4 . 7 
(assumed value) 
5.76 
5.96 
8.36 

Singlet states 

'B,u 4.89 
1B1U 6.14 
1E1U 6.75 

1EJg5 8.18 
Ej8Y 8.89 

1A2U ? 

triplet state, the important \k) states are 3Eiu and, to 
a lesser extent, 3B2u, 3A211, and 3E2g. For the study of 
the lowest B2u singlet state we should take into account 
\k) = 1BiU, 1EiU, 1E28 and, eventually, 1A2U. For a 
particular excited state \k), selected as described on 
energetic grounds, the matrix element of the numerator 
in (3) vanishes unless the direct product T(ri) X T(k) 
contains T(Q). This second selection rule then deter­
mines, for each |fc), the irreducible representation(s) 
to which a vibration Q must belong in order to stabilize 
|«) by mixing \n) and \k). The vibrations Q which 
might eventually stabilize the vertically excited 3Bi11 

state of benzene are listed in Table II.1S 

The third step is finally to select the most efficient 
vibration(s) among those belonging to the same irre­
ducible representation (among the four e2g vibrations, 
for example). As already pointed out, the matrix ele-

(9) A. Devaquet, / . Amer. Chem. Soc, 94, 5626 (1972). 
(10) If this lowest singlet state \n) results from the promotion of an 

electron from <pi to <//j, it may be shown9 that the destabilizing contribu­
tion of the ground state )0) (Ea0 — En" < 0) is roughly cancelled by the 
stabilization provided by the corresponding doubly excited state 
\m) « Wi — frfj (£„» - Eno > 0). 

(11) As pointed out by one of the referees, this approach is customary 
but not rigorous. Since the perturbation involves the motion of atoms, 
the perturbation treatment must describe the displacements of the cups 
of the atomic orbitals. This would require a summation not only over 
the discrete | k) excited states, but also over the continuum functions. 

(12) R. J. Buenker, J. L. Whitten, and J. D . Petke, J. Chem. Phys., 49, 
2261 (1968). 

(13) These vibrations are represented in Figure 50, G. Herzberg, 
"Infrared and Raman Spectra," Van Nostrand, Princeton, N. J., 1968, 
p 118. 
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Table II. Possible Stabilizing Vibrations of the 3B111 
State of Benzene" 

T(Q) = 
T(n) X T(Ic) 

Triplet state with [«) = 
\k) 3Bi11 Nature of Q 

3Ei1, e2g Vi 5,7 C H stretching 
ci6,8 CC stretching 
va,9 C H Il bending 
v\%,6 CCC Il bending 

3Bju aJg v3,3 C H Il bending 
3E2g em y,2,18 C H stretching 

ci3,19 CC stretching 
yn,20 C H Il bending 

3Asu b2 g VT,5 C H J. bending 
c8,4 CCC _L bending 

° The numbering and the description of the normal vibrations of 
benzene used here are those of G. Herzberg ("Infrared and R a m a n 
Spectra of Polyatomic Molecules," Van Nostrand, Princeton, N . J., 
p 363). However, for convenience, the numbering of Wilson (E. B. 
Wilson Jr., Phys. Rev., 45, 706 (1934)) has been added. 

ment depends upon the overlap between the electronic 
transition density {n\ \k) and the nuclear displacements 
Q. For the matrix element not to be too small these 
two parts have to be localized in the same regions of 
the molecule. In the triplet Bin case all the transition 
densities involve ir,7r* excited states, the only excep­
tion being the 3Bi11,

3A211 transition density, and are 
therefore mainly located on the hexagonal ring. Vibra­
tions involving the CH bonds provide a poor coupling 
between these 7r,7r* states and, when competing with 
CC vibrations, may be ignored. For this reason the 
e2g VuJ and vu,9 and the eiu vn,lB and vu,20 CH 
vibrations may be neglected (at least according to the 
descriptions in Table II) since they compete respectively 
with the e2g vn,S and vls,6 and the e]u Vj3,19 very active14 

CC vibrations. On the other hand the a2g vs,3 vibration 
is the only vibration coupling the 3Bi11 and 3B211 states. 
Even though v3,3 is a CH bending vibration it has to 
be considered as a possible active vibration. If we 
finally consider the 3Biu(7r,7r*), 3A211(U, TT*) transition 
density it is clear that the two interesting vibrations 
VT,5 and v8,4 involve roughly the same carbon atoms 
displacements. They differ by the fact that the hy­
drogen and the carbon atoms move "in phase" (va) or 
"out of phase" (^).13 It seems difficult to make a 
choice between them either qualitatively or quantita­
tively (since our calculations—see next section—are 
restricted to the carbon framework and to 7r,7r* states); 
it appears therefore safe to keep them in mind as they 
might eventually intervene in the interpretation of 
the experimental results. In conclusion the only re­
maining choice is between the vu,8 and vi8,6, e2g vi­
brations; this choice cannot be made without the 
evaluation of the corresponding matrix elements. 
These calculations will now be carried out, not only 
for this peculiar case but also for all eiu and e2g motions 
in order to check our qualitative arguments. 

II. Quantitative Selection of the Active em 
and e2g Vibrations 

The calculation of the off-diagonal matrix element 

(14) It has to be borne in mind that the third term in (2) is not con­
sidered here. By "act ive" we refer to terms in (3) which are negative 
and not too small. This does not insure that the overall second-order 
contr ibution is itself negative and stabilizing. 

hUQ) = hUQ) = <*l(ff)j"> W 

follows a three-step procedure: (a) the reduction of all 
the necessary integrals to a small number (1 or 2) of 
basic matrix elements between state wave functions; (b) 
the development of these basic integrals in matrix ele­
ments between atomic wave functions; and (c) the 
determination of the necessary atomic integrals. The 
first two steps have been developed by Albrecht15 

and the third one by Liehr.16 In this paragraph we 
simply outline the general framework of the method 
(mainly (a)) and complete Albrecht's results by some 
additions which were necessary in our particular prob­
lem. The practical rules involved in steps b and c are 
summarized in various appendices. 

The only nuclear coordinate dependent part of H 
which has to be taken into account in (4) is the nuclear-
electron attraction potential. 

The innocuous looking expression 5, in which / runs 
over the electrons and a over the nuclei, is transformed 
into the potent eq 6 by inserting in the derivative a 
system of local coordinates £ / ( / = 1, 2, 3) defined 
on the a atom. 

In the benzene case the in-plane local cartesian set on 
atom <r is composed of a radial coordinate £„* = R 
(positive outward) and a tangential coordinate ^ 2 = 
U (positive clockwise); the out-of-plane coordinate is 
S,3 = Z. In (6) the factor (Sr1Jd^Z)0 is the direction 
cosine of the vector t v with respect to the local dis­
placement £ / ; the factor (3£//dg)o is an element of 
the matrix which transforms the normal coordinate Q 
into the local cartesian system. This second factor 
must be obtained from a normal coordinate analysis 
which, in the benzene case, has been done by Albrecht.17 

Because (BHJdQ)0 is a sum of monoelectronic oper­
ators, we can perform the integration over all but one 
(p) electron in (6) and sum over the m indistinguish­
able electrons. By introducing the one-electron tran­
sition densities pnk(pY% 

Pn*(p) = m$+n(x',p)+k(x',P)dx' (7) 

we can rewrite (4) in a form (8) which is the starting 
point of our analysis, or more simply, christening the 

MC?) = 

,u,ms^m(u<> <•> 
coefficient by £ / (g ) and the integral by IJ(n,k,Q). 

Wfi) = ESfcWW.fi) W 
/ <• 

(15) (a) A. C. Albrecht, J. Chem. Phys., 33, 156 (1960); (b)-ibid., 3 3 , 
169 (1960). 

(16) (a) A . D . Liehr, Z. Naturforsch. A, 13, 311 (1958); (b) ibid., 13, 
429 (1958). 

(17) A. C. Albrecht, / . MoI. Spectrosc, 5, 236 (1960). 
(18) J. N . Murrell and J. A. Pople, Proc. Phys. Soc, London, Sect. A , 

69, 245 (1956). 
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Considering a reference carbon atom <r* and the associ­
ated local coordinate/* it is possible to create group theo­
retically all parent local coordinates | / which belong to 
a given irreducible representation.19 In other words 
S/ and £„*'* are related by an expression such as 

IAQ) = r,*A**,f*m,AQ) (10) 
Furthermore it has been demonstrated20 that the same 
relation holds among the corresponding integrals /. 

IAnAQ) = V,A«*,f*,Q)h*'Xn,k,Q) (H) 
The matrix element may therefore be rewritten 

M0 = 
E S.S(Q)I.S(n,k,Q)j:r,.jH<T*,r,Q) (12) 
**/* <F,/ 

where the sum over a* and / * goes over a minimum 
number of atomic centers and corresponding local 
cartesian coordinates. In addition, the analysis of 
I,*** shows that this integral vanishes unless the triple 
direct product TQi) X T(k) X T(^) contains Ti 
and also that the number of nonvanishing integrals 
Ic*

f* is given by the number of times Ti appears 
in the triple direct product (the application of 
these rules and of (12) is shown in Appendix A where 
a particular example is detailed). The determination 
of the basic integrals Ic*

f* is based on the fact that 
whenever the state wavefunctions \n) and \k) are ulti­
mately based on LCAO molecular orbitals it will be 
possible to express the one-electron transition density 
PnkiP) as a linear combination of basic transition den­
sities pi(p) built on atomic orbitals. 

Pnkip) = E«n*(0Pi(P) (13) 

The components p<Q?) are completely determined by 
both the nature of the atomic basis set (in the benzene 
case, we will consider six equivalent 2pz atomic orbitals 
4>{, i = 1. . . 6, located at the six equivalent carbon atoms 
of a hexagonal ring) and the symmetry properties of 
the molecule (D6» point group in the benzene case). 
The coefficients ank(i) depend on the actual forms of 
the LCAO expansion (the molecular orbitals of ben­
zene are given in Table III) and of the state wave-
functions, with or without configuration interaction 

Table HI. LCAO Molecular Orbitals of Benzene" 

^i = 0.3238(^1 + 4>i + 0s + <t>* + 0s + <t») 
<!*, = 0.2637(2</>i + 02 - 03 - 2^4 - 05 + <t>i) 
t, = O.4567(0S + 03 - 0s - 0«) 
^4 = O.5855(-02 + 03 - 05 + 0e) 
l/<6 = 0.3381(201 - 0J - 03 + 204 - 05 - 0e) 
jl = 0.5485(01 - 0i + 03 ~ 04 + 05 - 0c) 

" These MO's have been normalized including overlap (since the 
terms 0102, 0i03, 0104 as well as the terms 0i2 have been considered 
in our atomic one-electron densities p,). 

(19) The proper linear combination of the £<rf belonging to a given 
irreducible representation T(a) is obtained by forming the expression 

ZBXHR)RZ**'* 

i.e., by applying successively all the operations R of the molecular point 
group to the reference local coordinate %<s%

!* and by weighting each term 
by the character of R in T(a). 

(20) This theorem is proved by A. C. Albrecht in the Appendix A of 
ref 15a using a method previously outlined by E. P. Wigner (see E. P. 
Wigner, "Group Theory," Academic Press, New York, N. Y., 1959, 
Chapters 11 and 12). 

'W 

W -2 

»V3, 

Figure 1. The nine component transition densities arising when 
the electronic functions are based on six equivalent 2pa atomic orbi­
tals (each dot is located midway between a pair of atomic orbitals 
whose overlap constitutes a contribution to the transition density). 
All numbers are expressed in the unit V«« where e is the charge of 
the electron. The symmetries of the components are respectively 
E288(T11T21T3), E1^(SLSJ1S8), B111(V11V3), B211(V2). 

(the usual state wavefunctions of benzene are given in 
Table IV). 

Table IV. State Functions for Benzene" 

State function Symmetry 

2-V»(x,« + x*6) 
2- 'A( X 3 6 - W4) 
2-V«x.* + x*4) 
2-1ZKx3

4 - x*6) 
2-Vs(Xi6 - x*6) 
2-V<xi4 - x*6) 
2-'/'(Xi5 + x»6) 
2-'/=(xi4 + xs6) 

Biu 
B 2 u 

^ 1 U I l 

Eiub 
fc2gn7 
E2gb7 
fc-2gu5 
E2gbS 

"X.' means a configuration with an electron in j and a hole in /'. 

A basic (state) integral may therefore be expressed 
as 

?WP^So(S? dp = 

Z«n*Q)h*f*Q) (14) 
i 

The components p4 which belong to the irreducible 
representation T(a) are simply obtained by the action 
of the operator given in ref 19 on tf>i2> 4>i<h< <£i03, and 
01^4, successively. If we ignore the Ai, components 
which are not of great interest in our problem and if 
we choose the a component of the degenerate irreduc­
ible representations E2g and Em,21 nine densities are 
obtained (3E2g, 3Ei11, 2Biu, B2u) which are depicted in 
Figure 1. For each of the components pt we have to 
calculate the atomic integrals 1,^Q). The rules to 
be used in these evaluations and the various results are 
given in Appendix B. The last step in the practical 
determination of the integrals I1,*

1* is to develop the 
transition densities between states (see Table IV) in 
terms of the components p4. These expansions22 

(21) Interaction with the degenerate component a is only considered 
since the contribution from the b component is identical. 

(22) The matrix elements between the x's may be developed in terms 
of them's (and then in terms of the 0's) using the rules given by L. Salem, 
"The Molecular Orbital Theory of Conjugated Systems," W. A. Benja­
min, New York, N. Y., 1966, p 530. 
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Table V. Transition Densities pnk(p) in Terms of the Components p(i) and Value of the Corresponding Integrals hE and hv (in eV/A) 

State |«) State \k) Transition density pnk(p) h" hu 

Biu Eiub - 0 . 2 6 8 6 ( T i + T3) + 1.1028T2 1.1030 3.1700 
B2u Eiua 1.1028(Ti + T 3 ) - 0.2686T2 - 1 . 1 7 8 4 2.2837 
B lu E2l!aj 0.3003(S1 + S3) - 0.8121S2 - 1 .1992 - 0 . 8 6 2 2 
B2„ E2gbj -0.8121(Si + S 3 )+0 .3003S 2 0.0903 - 2 . 4 8 2 4 
V2E,„ a E28bj 0.4243(S1 + S3) - 1.1490S2 - 1 .6967 -1 .2212 

are shown in Table V together with the values of the 
integrals Ic*

f*. Knowing the integrals /tr*
/* we are 

in a position to apply eq 12 to the couples of states 
|«), \k) and the vibrations Q of interest (see for example 
eq A6 in Appendix A). Table VI shows fo rvarious 

Table VI. Value of the Expressions \(k\(dH/dQX\n)\y(Ek° - £„°) 
Involved in the Study of the Bi„, B2u, and Ei u 

Excited States of Benzene 

Couple 
(|«>, l*» 

|«) = sBiu 

I A) = 3Eiu 

|«) = 3E1,, 
|A) = 3B2U 

|«) = 3B11, 
|A) = 3E2g« 

[«> = 1B2U 
|A) = ' E M 

|«) = V^ 3 E 1 U 

|A) = 3E2g{ 

Vibration 
Q 

"18,6 

"!5,7 

"16,8 
"17,9 
"!8,6 

"15,7 
"!6,8 
"!7,9 
"12,18 

"13,19 
"14,20 
"is, 18 

"18,19 

"»,20 
"12,18 

"18,19 
"14,20 

h„kKQ\ 
eV2A~* 

0.250 
0.060 
3.157 
0.183 
1.307 
0.017 
0.759 

—0 
0.039 
0.289 
0.274 

~ 0 
0.757 
0.288 
0.078 
0.579 
0.549 

hnk\Q)IEk" 
-En", 

eVA- ' 

0.242 
0.058 
3.065 
0.177 
1.221 
0.016 
0.709 

~ 0 
0.017 
0.126 
0.119 

~ 0 
0.230 
0.087 
0.061 
0.456 
0.432 

|«), \k), and Q the values of the square of the matrix 
element hnk(Q) which appears in the numerator of 
(3). In addition, this table gives the values of the 
complete expression 3 (without the — 1 factor) using 
the state energies of Table I.23 

Using the results displayed in Table VI we may 
first check the validity of the third selection rule (the 
so-called "spatial localization" rule). As expected 
the e2g vibrations 7 and 9 (using Wilson's numbering) 
give almost negligible matrix elements in the coupling 
of the states 3Biu and 3Eiu on one hand, 3B2u and 3Ei11 

on the other. In these two cases the active vibrations 
are e2g 6 and 8. In the three other coupling schemes, 
however, the em vibrations 19 and 20 give comparable 
matrix elements. This result disagrees with the ex­
pected predominance of the vibration eiu 19. Although 
the two vibrations 19 and 20 are assigned different de­
scriptions (Table II), it turns out that the carbon atom 
displacements in each actually do not differ greatly 
(see Table I I I , / , ref 17) so their similar importance is 
not surprising. 

Our results also remove the ambiguity between the 
two vibrations 6 and 8. The most efficient vibration 

(23) Alternately, one could use the state energies given by D. R. 
Kearns, J. Chem. Phys., 36,1608 (1962), but the relative magnitude of the 
various terms would not change appreciably. 

in the process of stabilizing the 3Bi11 vertically excited 
state is undoubtedly the 1595-cirr1 CC stretching 
vibration 8 whereas the 3B211 triplet state is predom­
inantly mixed with the 3Eiu state via vibration 6. In 
his paper on the electronic structure of cyclic polyenes 
having the general formula C4n+2H4n+2 Moffitt24 defined 
even and odd perturbations respectively as those which 
connect atomic orbital basis functions on carbon atoms 
whose numbering differs by even (including zero) and 
odd integers. A CC stretching vibration (e2g 8, for 
example) is "odd" whereas a carbon bending vibra­
tion (e2g 6) is a smaller odd-type perturbation which 
contains even terms as well. Table V shows that the 
predominant term in the transition density Biu,Elu 

is T2, which involves "odd" interactions between neigh­
boring carbon atoms. This perfect match between 
the odd vs vibration and the (mainly) odd Bi 
transition density25 explains the very active role of the 
e2g 8 vibration in the stabilization of the lowest triplet 
state 3Biu. Table V shows also that the transition 
density B2u,Eiu is mainly even (T15T3). The interac­
tion of these dominant transition densities with the 
small "even" part of the bending vibration 6 and of 
the (smaller) odd transition density T2 with the small 
odd part of the bending vibration explains the fact 
that e2g 6 is the most active vibration in the B2u case 
(though much less than e2g is in the B lu case). 

The only remaining problem to be investigated is 
the influence of the degeneracy of the e2g vibration 8 
on the potential energy surface E of the lowest triplet 
state (3Bi11). If the two components of the vibration 
are called Qa and Qb, what are the characteristics of 
the surface E(Q^Qb) in the vicinity of the vertically 
excited point? 

III. Potential Energy Surface E(Q„Qh) of the 3Bi11 

State of Benzene 

The e2g 8 vibration renders the doubly degenerated 
3Em state Jahn-Teller unstable and, in addition, couples 
the 3Eiu states with the 3Bm state which lies 1 eV below. 
The effect of the E lu Jahn-Teller instability on the Bm 
state may be studied by perturbation theory,26 but we 
shall use here the method of Longuet-Higgins.27 We 
may adopt for the wavefunction of B iu a real form 
yj/0 (energy E0) and for those of E1n the two complex 
conjugate forms ^1 and \p2 (energy E1). These func­
tions are supposed to be orthogonal. In the same 

(24) W. Moffitt, ibid., 22, 320 (1954). 
(25) More precisely, the integrals hR and hu associated with T2 have 

the same sign and this fact remains after inclusion of the contributions 
of Ti and T3 (see Table V). On the other hand, the coefficients £i R(8) 
and fc U(S) also have the same sign (eq A5 of Appendix A). The two 
contributions add together to give a large matrix element /IBI...EIU (8). 

(26) G. Fisher and G. S. Small, / . Chem. Phys., 56, 5934 (1970). 
(27) H. C. Longuet-Higgins, Adeem. Spectrosc, 2, 249 (1961). The 

method used here is an extension of the method outlined in paragraph 
IX of this paper. The perturbation treatment 26 has been used to verify 
our results. 
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way we define the two "complex" vibrations 

Qi = g . + igb = pe** 

Q2= Qz- iQh pe ,_i0 

(15) 

(16) 

Since the double degeneracy of the E irreducible rep­
resentations in benzene is basically due to the C3 

axis (simply called C here) we suppose that the i/> and 
Q have the property that (to = exp(2iri/3)) 

C\f/0 = \po', Cipi = « ^ 1 ; Ci/>2 = u*\p2 (17) 

CQi = wQi; CQ2 = co*Q2 (18) 

Denoting by H' the Hamiltonian of the molecule in­
cluding distortions, we may express its wavefunctions 
as linear combinations of the \pt (i = 0, 1, 2). By the 
variational principle the required coefficients and the 
associated electronic potentials E would then be the 
eigenvectors and eigenvalues of the matrix 

(19) 

The matrix elements H'i} = S^tH'^^g (/, j = 0, 1, 2; 
dg represents the integration over the electronic co­
ordinates) are expanded in powers of the normal co­
ordinates Qi and Q2. 

H'v = Eidij + YlQ'an + 

H'oo 

H'10 

H 20 

H'oi 

H'n 

H'21 

H'02 

H'n 

H'22 

(v, n = 1, 2) (20) 

The electronic potential E of the B lu state will be cal­
culated through the third order in p. That is, the 
diagonal elements in (19) have to be evaluated to the 
third order whereas the off-diagonal elements need 
only to be determined to the second order. On the 
other hand, both sides of eq 20 must behave the same 
way under C. The diagonal matrix elements are in­
variant under C; we may therefore write, taking, for 
example, i = j = 0 

/Too = E0 + P00Q1Q2 + VeTooCgi3 + Q 2
3) = 

E0 + P00P2+ VSTOO/O3 cos 3 0 (21) 

If we now consider, for example, the off-diagonal 
matrix element H'0i (i = 0 j , = 1) the left-hand side 
of (20) is multiplied by w under C and so has to be the 
right side. 

H'01 = aoxGi + 72/3oi & 2 = 

ocoipe^ + 72/30iP
2e-2i* (22) 

Using these expressions, the three eigenvalues of (19) 
are given by 

JF0(B1U) = Eo + Apt + Bp3 cos 30 (23) 

Ei(E1J = Ei - Cp + Dp\\ ~ F cos 30) (24) 

JF2(E1U) = .E1 + Cp + Dp\\ + F cos 30) (25) 

when the A, B, C, D and F are functions of the param­
eters a, j3, and 7. One has to remember that these 
expressions are only valid for small values of p, the 
value p = 0 corresponding to the vertically excited 
state. 

The 3Bm potential energy surface displays two char­
acteristics. In the first place the coefficient A is given 

by (26) where /3oo corresponds to the second-order 

A = 0oo - 2a0 1
2 /(^ - £0) (26) 

diagonal element (n\(d2H/dQ2)o\n) (see formula 2) 
which has not been considered in our analysis and 
a0i to the large off-diagonal element hk„(Q) with n = 
3B1U, k = 3E1U, and Q = e2g 8 (see Table VI). A is 
certainly negative and, therefore, the B iu vertically 
excited state is stabilized by the vibrationally induced 
mixing with the E111 states. In the second place, the 
stabilization is not uniform. This is due to the third 
order term which readily shows that the steepest sta­
bilization paths arise when 0 = 0, 27r/3 and 47r/3 if 
B is negative, when 0 = 7r/3, IT, 5IT/3 if B is positive.28 

The values 0 = 2mir/3 (m = 0, 1, 2) correspond to 
"elongated" geometries of benzene (two long and four 
short bonds) whereas the values 0 = (2m + l)ir/3 
(m = 0, 1, 2) correspond to "compressed" structures 
(two short and four long bonds).29'30 The alternation 
of "elongated" and "compressed" structures when 0 
varies from 0 to 2 -w is represented in Figure 5, ref 29. 
This alternation has also been studied by semiempirical 
methods. These methods require the knowledge of 
the bond length dependence of 7r-electron energies. 
Two approximate formulas are available (a) the Len-
nard-Jones (LJ) or harmonic approximation31 and (b) 
the exponential dependence of Longuet-Higgins and 
Salem (LHS).32 The nature of the energetically lowest 
configuration depends upon the sign of the second 
derivative fi"(r) of the 7r-electron resonance energy 
/3(r) with distance.33 In the LJ approximation /3"(r) 
is positive and nonquinoidal structures are favored. 
Indeed Liehr, using the LJ approximation, found 
that the nonquinoidal structure (two long bonds in 
the 1,2 and 4,5 positions, our "elongated" benzene) 
is 505 cm - 1 more stable than the "compressed" quin­
oidal structure (two short bonds in 1,2 and 4,5).29 

In the LHS approximation 0"(r) is negative and the 
quinoidal structures are favored, de Groot and van 
der Waals,34 using the LHS approximation and as­
suming D2H distortions, found that the quinoidal form 
is 520 cm - 1 more stable than the nonquinoidal struc­
ture. At the present time it is therefore impossible 
to decide if the B lu state is quinoidal (compressed) or 
nonquinoidal (elongated). 

In conclusion we may classify the "active" vibrations 
for the B lu triplet state of benzene in two groups: (a) 
the doubly degenerate e2g 8 vibration which is probably 
a stabilizing vibration distorting the hexagonal free 
molecule into a Dn "elongated" or compressed" struc­
ture and (b) the elu (19, 20), a2g (3) and b2g (4, 5) which, 
depending upon the corresponding diagonal second-
order term, might slightly stabilize the vertically ex­
cited species, but more certainly are simply associated 
with flat parabolic energy curves. Due to this soft 
energy variation these vibrations are particularly well 

(28) 
cannot 

(29) 
(30) 

terns," 
(31) 
(32) 
(33) 

(1960). 
(34) 

(1963). 

The coefficient B is made up of three contributions and its sign 
be predicted easily. 
A. D. Liehr, Z. Naturforsch. A, 16, 641 (1961). 
L. Salem, "The Molecular Orbital Theory of Conjugated Sys-
W. A. Benjamin, New York, N. Y., 1966, p 473. 
J. E. Lennard-Jones, Proc. Roy. Soc, Ser. A, 158, 280 (1937). 
H. C. Longuet-Higgins and L. Salem ibid., 251, 172 (1959). 
W. D. Hobey and A. D. McLachlan, J. Chem. Phys., 33, 1695 

M. S. de Groot and J. H. van der Waals, MoI. Phys., 6, 545 
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adapted to accommodate extrinsic perturbations such 
as the small steric constraints at a crystalline site. 

IV. Comparison with the Experimental Results 

Most of our knowledge concerning the distortions 
in the 3B lu and 'B2u excited states of benzene comes 
from solid state experiments where the benzene mole­
cule (or isotopic benzene) is diluted in a host crystal. 
In such an environment, the ground-state molecule 
itself displays slight deviations from the high Dih 

symmetry. X-Ray studies35a show that the difference 
in the magnitude o of the interatomic CC distances 
amounts to 0.005 A (0.4%) and in the angles to 1° 
14' (0.8%).36b The carbon atoms are not coplanar, 
their out-of-plane shift being 0.0013 A. These inter-
molecular perturbations on the molecular force field 
of the ground state also shift nondegenerate vibra­
tions in the infrared spectrum of isotopic modifica­
tions of benzene having lower than D3n symmetry.36 

The crucial question of the intrinsic or extrinsic 
nature of the excited state distortions is carefully de­
tailed in the very interesting paper of Nieman and Tinti. 
This question is not yet solved and we will simply 
recall some prominent experimental facts which are 
directly related to the results obtained in the preceding 
sections of this paper. 

The conspicuous role of the e2g 8 vibration in the 
properties of the lowest Biu triplet is clearly indicated by 
the absorption and emission spectra. The ground 
state e2g 8 mode at 1596 cm - 1 is shifted to 250 cm - 1 

in the singlet triplet absorption spectrum.4b van der 
Waals, et al., have indeed shown that this mode, which 
is involved in the vibronic coupling with the Eiu states, 
may decrease in frequency to as much as a third of its 
value in the absence of coupling. (Inclusion of higher 
order terms would further reduce the frequency.40) 
In the emission spectra at low temperatures, where 
only ground-state vibrations appear, the most active 
vibration in the phosphorescence spectrum of C6H6 

is also the e2g 8 mode at 1596 cm-1.4* If we now con­
sider the equilibrium geometry of the 8Bi11 state, the 
endor experiments411 show that, in a crystalline en­
vironment, the only symmetry possessed by this triplet 
state is a center, in agreement with the C,- site symmetry 
of the crystal. The molecule also has two long bonds 
and therefore a nonquinoidal "elongated" structure. 
(This corresponds to a negative value of B; see section 
III.) Furthermore, (1) the nonplanarity of the mole­
cule is obvious and (2) the detection of three proton 
endor lines shows that the six protons occur in three 
measurably inequivalent pairs of equivalent hydrogen 
atoms. These two facts may be related, the first one 
to b2g (4, 5) and the second to a2g (3) distortions, dis­
tortions which have been shown to be the best candi­
dates in accommodating extrinsic perturbations. 
Shortly speaking, one might consider the e28 8 distor­
tion as an intrinsic distortion of the triplet state mod­
ified—magnified or even demagnified—by the crystal­
line environment and the other b2g (4, 5) and a2g (3) 
displacements as arising from extrinsic perturbations. 
The intrinsic character of the e2g 8 distortion seems to 

(35) (a) E. G. Cox, D. W. J. Cruickshank, and J. A. S. Smith, Proc. 
Roy. Soc, Ser. A, 247,1 (1958); (b) V. L. Broude and M. J. Onoprienko, 
Opt. Spectrosc. (USSR), 10, 332 (1961). 

(36) E. R. Bernstein and G. W. Robinson, private communication to 
G. C. Nieman and D. S. Tinti; see ref 4a. 

be confirmed by the fact that the B iu singlet state (S2) 
of benzene can isomerize directly into Dewar benzene.37 

An "elongated" structure of this singlet (see Figure 5 
in ref 29) would make this symmetry-allowed process 
easier. Basically, the appearance of this isomeriza-
tion in the second excited singlet is due to the fact that 
the internal conversion efficiency from upper electronic 
states to Si (which is normally unity for most organic 
molecules) is significantly lower than one for benzene 
and methylbenzenes.38 

If we turn our attention towards the lowest excited 
singlet state 1B2U we see that now the prominent role 
is played by the e2g 6 vibration, in agreement with the 
results of section II. This mode (606 cm-') is the 
most active fluorescence vibration but the absorption 
experiments39 show that its frequency is only shifted 
to 521 cm - 1 in the 1B211 state (whereas the e2g 8 mode 
is shifted from 1596 to 1470 cm -1), a small displacement 
compared to the shift of e2g 8 in 3Biu. On the other 
hand, the splittings in the fluorescence spectrum due 
to isotopic substitution of benzene are only about 
one-eight as large as those in the phosphorescence 
implying that the distortion in the 3Bm state is larger 
than that in the 1B2U state,4a but here again, it does not 
seem possible to decide if the distortion is intrinsic 
or extrinsic. Table VI indicates in addition that the 
elu 19 vibration which couples the 1B2U state with the 
1E28 states might be important. It is interesting to 
point out that the superposition of the 6 and 19 vibra­
tions may readily give the "biradical" (I) which is 
considered to be the precursor40 in the formation of 
1,3 adducts in the photoaddition of monoolefins to 
benzene41 or in the formation of benzvalene in the 
irradiation of 1,2,4- or l,3,5-tri-?erf-butylbenzenes.42 

Scheme I 

e2g(S> e lu(19) r 

If we now briefly consider the second triplet state E1n 

it appears that, in addition to its interaction with the 
3Biu state, this state interacts with the doubly degener­
ate 3E2^ state. (The symbol 5 means the ( + ) com­
bination of the wavefunctions x; see Table IV. This 
( + ) combination is slightly lower in energy than the ( —) 
combination Y.4 3) The symmetry-adapted transition 
densities Pnk (\n) = 3E3u, \k) = 3E2J are 

lu?3E2ga{ ± Eiub
 3E28^j (27a) 

(1/V^)J3EiUa3E28W ± 3E1Ub3E28^j (27b) 

(37) D. Bryce-Smith, A. Gilbert, and D. A. Robinson, Angew. Chem., 
Int. Ed. Engl, 10,745 (1971). 

(38) C. L. Braun, S. Kato, and S. Lipsky, J. Chem. Phys., 39, 1645 
(1963). 

(39) F. M. Garforth, C. K. Ingold, and H. G. Poole, / . Chem. Soc, 
491 (1948). 

(40) D. Bryce-Smith and H. C. Longuet-Higgins, Chem. Cotimun., 
593 (1966). 

(41) (a) K. E. Wilzbach and L. Kaplan, / . Amer. Chem. Soc, 88, 
2066 (1966); (b) D. Bryce-Smith, A. Gilbert, and B. H. Orger, Chem. 
Commun., 512(1966). 

(42) K. E. Wilzbach and L. Kaplan, / . Amer. Chem. Soc, 87, 4004 
(1965). 

(43) J. N. Murrell and K. L. McEwen, / . Chem. Phys., 25, 1143 
(1956). 
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Due to our choice of 3Ei11 and 3E2g wavefunctions (see 
Table IV) the transition densities corresponding to 
biu and b2u (EXu X E2g = Blu + B2u + Em) vibrations 
vanish whereas, for example, the ( + ) combination in 
eq 27a is simply 

V P E ^ E ^ (28) 

Table VI shows that the two e iu (19,20) vibrations 
significantly couple the two states 3Eiu and 3E2gS and 
might possibly provide a further stabilization of the 
3Eiu states. 

V. Conclusion 

The aim of this paper was mainly to propose a set 
of qualitative rules which would be of some use in 
selecting the vibrations which might possibly stabilize 
a vertically excited species. Such rules may be helpful 
for the purpose of rapidly determining the geometry 
and the reactivity of an excited species but also as a 
guide in the choice of the distortions worthy of con­
sideration in an ab initio SCF calculation. In addition, 
we have given the sequence of steps to be followed in 
the quantitative evaluation of the off-diagonal second 
order terms. Even though this sequence may seem 
rather awkward its practical use is straightforward. 

The limitations of our treatment of the 3Bi11 state 
of benzene are (a) the neglect of the diagonal second-
order term and (b) the nature of the wavefunctions 
we used. More generally, the study of excited states 
is very often done using the virtual orbitals from the 
ground-state calculation. The field terms in the 
Hamiltonian for a virtual orbital are due to all N elec­
trons while the appropriate field for the excited state 
orbital ^1 contains only interactions with N — 1 
electrons. (The simplest possible way to take this 
into account would be for example to take \ps to be 
the solution of 

(h + 2JC - Kc + / , ± K1)^1 = erf, (29) 

where ( + ) is for the singlet state and ( —) for the trip­
let state and where the orbitals in Jc and Kc (the closed-
shell Coulomb and exchange operators) and Jt and Kt 

are assumed to have their ground-state forms. This 
is called the frozen core44 or IVO45 approximation and 
corresponds to variationally adjusting \pj in the open-
shell Hartree-Fock wavefunction for the excited state.) 
On the other hand, the state wavefunctions have to 
include the necessary configuration interactions (this 
is particularly important for example in the case of the 
E2g, Eiu coupling15b where the b i u and b2u vibrations 
could then be activated). However, such a mixing 
of ASMO wavefunctions does not restrict the treatment 
since, ultimately, all transition densities may always be 
developed in terms of the components p{i). 

Acknowledgments. The author wishes to express 
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numerous stimulating discussions. 

Appendix A 

The reducible representations T(JO = T(R), T(U), 

(44) H. Lefebvre-Brion, C. Moser, and R. Nesbet, J. MoI. Spectrosc, 
13, 418 (1964). 

(45) W. J. Hunt and W. A. Goddard III, Chem. Phvs. Lett., 3, 414 
(1969). 

T(Z), are first decomposed in terms of the irreducible 
representations of the D6n point group. 

T(R) = Aig + E2g + B lu + Eiu 

T(U) = A2g + E2g + B2u + Eiu (Al) 

T(Z) = B2g + Ei8 + A2u + E2u 

Let us now consider, for example, the matrix element 
hnk(Q) with |«) = 3Biu, |ft>= 3Eiu and Q = vufi (the 
1595 cm - 1 vibration of benzene). Since r(Biu) X 
T(Em) = r(E2g) it is clear that both triple products 
T(Biu) X r(Ei„) X T(R) and r(B l a) X r(E lu) X T(U) 
contain Ti only one time. Therefore /ZBIU,EIU(8) may be 
ultimately expressed in terms of two basic integrals I„*R 

and I„*u, respectively located for convenience at the 
atoms <r* = 1 and 2, and simply dubbed hR and I2

7. 
To obtain the complete expansion of h we first 

determine the quantities -q2, using for this purpose 
Table VII, ref 17. Considering the R displacements 
and the component a of the doubly degenerate irreduc­
ible representation e2g, we have 

^iie(e2ga) = x, £2*(e2ga) = -x/2 (A2) 

and therefore 772.je(l,-R,egga) = — 1J2. It is straightforward 
to obtain 

£ 77,y(l,i?,e2ga) = 3 (A3) 
C = 1 

and following an identical procedure for the U dis­
placements 

£ ^,^(2,£/,e2ga) = 4 (A4) 
(7 = 1 

The last step is now to simply read the coefficient 
^'"(eaga, 8) in Table IUe, ref 17. 

$,*(8) = -0.06905 
(A5) 

fc*(8) = -0.12221 

We are now in position to apply (12), leaving hR 

and hu as parameters to be determined. 

ABIU.BIU(8) = (-0.06905) X 

3 X / , 8 + (-0.12221) X 4 X hu (A6) 

Appendix B 

When the component density p(i) is ultimately de­
veloped in atomic terms (such as fa2, fafa, • • •) as 
illustrated in Figure 1 it appears that I«*r*(i) is made of 
terms whose basic structure is 

(Cp1Ih(R1) or h(U2)\fa) (Bl) 

The detailed expression of the operators h is not neces­
sary here (for further details see ref 16b.) They come 
from the development of the derivatives in (14). Except 
for the vanishing integrals (Cj)1Ih(R1) or A(EZi)|0i) the 
quantities (Bl) may be expressed as 

(^h(R1) or h(U2)\4>}) = 
cos (d, R1 or EZ2) X 1(d) X S (B2) 

In this expression d and cos (d, R1 or U2) are respec­
tively the length and the direction cosine (with respect 
to R1 or EZ2) of a vector d whose definition in the various 
cases is given in Table VII. The integral 1(d) may be 
h or I1 depending on the cases (see Table VII). The 
overlap integral S is called I2 by Liehr. These three 
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Table VII. Definition of the Vector d and of the Integrals 1(d) 
and S for the Various Cases Encountered in the Evaluation of the 
Integrals U*1* (i). 

Integral 

i<t>i\lh\4>i) 
i * 1 

<0i|MJ0i> 
{<t>i\hi\4>i) 

Uj ^ 1 

d 

Joins atoms 1 and ;' 

Joins atoms 1 and ;' 
Joins atom 1 to the center 

of the transition density 
4>i4>i (midway point be­
tween ;' and j) 

Kd) 

hid) 

h(d) 
Ud) 

S 

1 

1 
Ud'), d' being the 

distance be­
tween atoms 
i and j 

Table VIII. Integrals hR and If for the Nine Transition 
Densities p(i) (Values are Given in eV/A) 

hR 

If 

hR 

If 

If 

Ti 
1.3681 
2.8290 

Si 
0.1396 
3.8926 

Vi 
0.9490 
0 

Tj 
0.7867 
3.5924 

Sj 
1.6629 
2.5394 

V2 

0 
0.7908 

T 
0.4912 
0.1171 

S3 

0.3640 
0.1033 

V3 

0.1060 
0 

basic integrals Jt (i - 0, 1, 2) have been tabulated for 
various distances d and are independent of the particular 
benzene problem.16b 

The integrals h*'*(i) for the nine transition densities 
p(i) are summarized in Table VIII. 

Mechanism of the Chemiluminescent Reaction of Certain 
Alkyl Halides with Electrogenerated Aromatic 
Hydrocarbon Radical Anions1,2 

Theodore M. Siegel and Harry B. Mark, Jr.* 

Contribution from the Department of Chemistry, 
University of Cincinnati, Cincinnati, Ohio 45221. Received May 10, 1972 

Abstract: The electroreduction of a variety of polycyclic, aromatic hydrocarbons (R) in the presence of either 
9,10-dichloro-9,10-dihydro-9,10-diphenylanthracene (DPACl2) or l,2-dibromo-l,2-diphenylethane (DPEBr2) was 
found to result in intense luminescence. In each instance the spectrum of this electrochemiluminescence (eel) was 
virtually identical with the singlet emission spectrum of the aromatic hydrocarbon. In general, the efficiency of 
this luminescence was found to be greater than that of the normal radical anion-radical cation eel of the same 
hydrocarbon. It was also found that when two or more aromatic hydrocarbons were present in the same solution 
only the emission spectrum of the lower singlet energy species could be observed regardless of which aromatic radi­
cal anion was being generated at the electrode. Experiments with mixed systems containing fluoranthene, which 
did not exhibit eel by itself with DPEBr2, and several aromatic hydrocarbons which have lower triplet energies than 
fluoranthene, resulted in only fluoranthene singlet emission. These experiments indicated the excited singlet is 
generated directly upon electron transfer from R • ~ rather than through a triplet-triplet annihilation reaction. 
The following general mechanism was found consistent with the observed experimental results: R + e <=* R •" (1), 
R.- + AX2 ^± R + AX2--(2), A X 2 ' - ^ AX- + X~ (3), R-- + AX- <=» 1R* + AX~ (4), R + A X - ^ 
R • + + AX- (5), AX" -* A + X- (6), R •" + R - - -* 1R* + R (7), 1R* -* R + hv (8). (AX2 represents the alkyl 
halide.) The efficiency of the DPACl2 systems ahd the behavior of the fluoranthene mixed systems indicate that the 
excited singlet can arise by both reaction 4 and reactions 5 plus 7. 

Recently, preliminary observations concerning the 
. electrochemiluminescence, eel, obtained upon the 

reaction of electrogenerated aromatic hydrocarbon 
radical anions, R- - , of a variety of aromatic hydro­
carbons (in various nonaqueous solvents) with either 
9,10- dichloro - 9,10 - dihydro - 9,10 - diphenylanthracene 
(DPACl2) or l,2-dibromo-l,2-diphenylethane (DPEBr2) 
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(2) A preliminary communication concerning this phenomenon has 
been published: T. M. Siegel and H. B. Mark, Jr.,/. Amer. Chem. Soc, 
93, 6281 (1971). 

have been reported.2 For the DPACl2 system it was 
found that the intensity of the observed emission of 
the aromatic hydrocarbon, DPA, was unexpectedly 
about two orders of magnitude greater than that ob­
served for the more commonly reported eel obtained 
upon the annihilation of the electrogenerated radical 
anions and radical cations of 9,10-diphenylanthracene 
(DPA).3 Also, it was reported that for solutions con-

(3) (a) The intensity of the 9,10-diphenylanthracene (DPA) singlet 
emission obtained for the reaction of DPACh with electrogenerated 
DPA-- was compared with DPA • "/DPA •+ annihilation eel using the 
same solvent-supporting electrolyte system. Square wave voltages 
(-0.1 to -2 .0 V for the DPACl2 case, +1.4 to -2 .0 V for the DPA case) 
of the same frequency were employed and integrated light intensities 
during negative pulses were compared, (b) For detailed discussion of 
radical cation-radical anion annihilation eel, see A. J. Bard, K. S. V. 
Santhanam, S. A. Cruser, and L. R. Faulkner in "Fluorescence," G. G. 
Guibault, Ed., Marcel Dekker, New York, N. Y., 1967, pp 627-651; 
D. M. Hercules in "Physical Methods of Organic Chemistry," 4th ed., 
Part II, A. Weissberger and B. Rossiter, Ed., Academic Press, New 
York, N. Y., 1971; A. Zweig, Adcan. Photochem., 6, 425 (1968). 
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